Paginas afines

martes, 25 de octubre de 2011

Torno, Fresadora y Taladro y sus partes



Maquinado Automatizado

Estos procesos se utilizan para conformar partes de materiales como metales, plásticos, cerámica y madera. El maquinado es un proceso que exige tiempo y desperdicia material. Sin embargo, es muy preciso y puede producir una tersura de superficie difícil de lograr con otros procesos de formación. El maquinado tradicional se lleva a cabo con el uso de una herramienta de corte, que remueve el material de la pieza de trabajo en forma de virutas, con lo cual se le da la configuración deseada

Los procesos para remoción de material se clasifican como tradicionales o con formación de virutas y no tradicionales o sin virutas.

Las herramientas de corte son, ya sea, de un solo filo o de filos múltiples.

Con los avenes de la tecnología, se han desarrollado materiales más fuertes y más duros. El procesamiento eficiente de esos materiales no era posible con los procesos tradicionales para remoción de material. Por lo tanto, se han creado varios procesos nuevos y especializados. Al contrario de los procesos tradicionales en donde la remoción del material necesita una herramienta de corte, los procesos no tradicionales se basan en los fenómenos ultrasónicos, químicos electroquimicos, de electrodescarga y haces de electrones, láser y iones. En estos procesos, la remoción de material no esta influida por las propiedades del material; se puede maquinar material de cualquier dureza. Ahora bien, algunos de estos procesos se encuentran en la etapa experimental y no se presentan para elevados volúmenes de producción. En la mayoría de estos procesos, se maquina una parte cada vez. Los procesos no tradicionales son más complejos y se requiere considerable pericia y conocimientos para operarlos en forma eficiente.

Velocidad de corte del aluminio

Maquinado Tradicional

Procesos de remoción de material (maquinado)
Estos procesos se utilizan para conformar partes de materiales como metales, plásticos, cerámica y madera. El maquinado es un proceso que exige tiempo y desperdicia material. Sin embargo, es muy preciso y puede producir una tersura de superficie difícil de lograr con otros procesos de formación. El maquinado tradicional se lleva a cabo con el uso de una herramienta de corte, que remueve el material de la pieza de trabajo en forma de virutas, con lo cual se le da la configuración deseada
Los procesos para remoción de material se clasifican como tradicionales o con formación de virutas y no tradicionales o sin virutas.
En todos los procesos tradicionales para remoción de material, los tres elementos básicos son la pieza de trabajo, la herramienta de corte, y la maquina herramienta. Las funciones básicas de la maquina herramienta son: 1) proveer los movimientos relativos entre la herramienta de corte y la pieza de trabajo en forma de velocidades y avances; 2) mantener las posiciones relativas de la herramienta de corte y de la pieza de trabajo, a fin de que la remoción de material resultante produzca la forma requerida. Al variar las posiciones y movimientos entre la pieza de trabajo y la herramienta de corte, se puede efectuar mas una operación en la maquina herramienta.
Las herramientas de corte son, ya sea, de un solo filo o de filos múltiples.
Con los avenes de la tecnología, se han desarrollado materiales más fuertes y más duros. El procesamiento eficiente de esos materiales no era posible con los procesos tradicionales para remoción de material. Por lo tanto, se han creado varios procesos nuevos y especializados. Al contrario de los procesos tradicionales en donde la remoción del material necesita una herramienta de corte, los procesos no tradicionales se basan en los fenómenos ultrasónicos, químicos electroquimicos, de electrodescarga y haces de electrones, láser y iones. En estos procesos, la remoción de material no esta influida por las propiedades del material; se puede maquinar material de cualquier dureza. Ahora bien, algunos de estos procesos se encuentran en la etapa experimental y no se presentan para elevados volúmenes de producción. En la mayoría de estos procesos, se maquina una parte cada vez. Los procesos no tradicionales son más complejos y se requiere considerable pericia y conocimientos para operarlos en forma eficiente.

Formado Mecanico

Procesos de formado mecánico
El formado de partes con la aplicación de fuerza mecánica, se considera uno de los procesos de formación más importantes, en términos del valor de la producción y del método de producción. El formado de partes se puede efectuar con el material frío (formado en frío) o con material caliente (formado en caliente). Las fuerzas utilizadas para formar las partes pueden ser de tipo de flexión, compresión o cizallado y tensión. Los procesos de formado se pueden clasificar sobre la base de la forma en que se aplica la fuerza.
El formado por doblado se efectúa al obligar a el material a doblarse a lo largo de un eje. Entre los procesos por doblado están el doblez, pelado, corrugado y rechazado en alta velocidad. El formado por cizallado (guillotinado) es en realidad, un proceso de separación de material en el cual se hace pasar a presión una o dos cuchillas a traves de una parte fija.
El cizallado también incluye procesos tales como punzado o perforación, estampado, punzado con matrices y refinado. El formado por compresión se efectúa al obligar al material, frío o caliente, a adecuarse a la configuración deseada con la ayuda de un dado, un rodillo o un buzo o punzón. El formado por compresión, incluye procesos tales como forja, extrusion, laminado y acuñado.
El formado por tensión se efectúa al estirar el material para que adopte la configuración deseada. Incluye procesos tales como estirado, formado por trefilado y abocinado.
Procesos de remoción de material (maquinado)
Estos procesos se utilizan para conformar partes de materiales como metales, plásticos, cerámica y madera. El maquinado es un proceso que exige tiempo y desperdicia material. Sin embargo, es muy preciso y puede producir una tersura de superficie difícil de lograr con otros procesos de formación. El maquinado tradicional se lleva a cabo con el uso de una herramienta de corte, que remueve el material de la pieza de trabajo en forma de virutas, con lo cual se le da la configuración deseada.
Los procesos para remoción de material se clasifican como tradicionales o con formación de virutas y no tradicionales o sin virutas.
En todos los procesos tradicionales para remoción de material, los tres elementos básicos son la pieza de trabajo, la herramienta de corte, y la maquina herramienta. Las funciones básicas de la maquina herramienta son: 1) proveer los movimientos relativos entre la herramienta de corte y la pieza de trabajo en forma de velocidades y avances; 2) mantener las posiciones relativas de la herramienta de corte y de la pieza de trabajo, a fin de que la remoción de material resultante produzca la forma requerida. Al variar las posiciones y movimientos entre la pieza de trabajo y la herramienta de corte, se puede efectuar mas una operación en la maquina herramienta.
Las herramientas de corte son, ya sea, de un solo filo o de filos múltiples.
Con los avenes de la tecnología, se han desarrollado materiales más fuertes y más duros. El procesamiento eficiente de esos materiales no era posible con los procesos tradicionales para remoción de material. Por lo tanto, se han creado varios procesos nuevos y especializados. Al contrario de los procesos tradicionales en donde la remoción del material necesita una herramienta de corte, los procesos no tradicionales se basan en los fenómenos ultrasónicos, químicos electroquimicos, de electrodescarga y haces de electrones, láser y iones. En estos procesos, la remoción de material no esta influida por las propiedades del material; se puede maquinar material de cualquier dureza. Ahora bien, algunos de estos procesos se encuentran en la etapa experimental y no se presentan para elevados volúmenes de producción. En la mayoría de estos procesos, se maquina una parte cada vez. Los procesos no tradicionales son más complejos y se requiere considerable pericia y conocimientos para operarlos en forma eficiente.
Procesos que provocan desprendimiento de viruta
Sé a hecho mucha investigación en el estudio de la mecánica y geometría la formación de la viruta y la reacción de su forma, a factores tales como duración de la herramienta y el acabado de la superficie. Las virutas herramientas se han calcificado en tres tipos.
El tipo 1 una viruta discontinua o fragmentada, representa una conducción en el que el metal se fractura en partes considerablemente pequeñas de las herramientas cortantes. Este tipo de viruta se obtiene por maquina la mayoría de los materiales frágiles, tales como el hierro fundido.
En tanto se producen estas virutas, el filo cortante corrige las irregularidades y se obtiene un acabado bastante bueno. La duración de la herramienta es considerablemente alta y la falla ocurre usualmente como resultado de la acción del desgaste de la superficie de contacto de la herramienta.
También puede formar virutas discontinuas en algunos materiales dúctiles y el coeficiente de ficción es alto. Sin embargo, tales virutas de materiales dúctiles son una inducción de malas condiciones de corte:
Un tipo ideal de viruta desde el punto de vista de la duración de la herramienta y el acabado, es la del tipo B continua simple, que se obtiene en el corte de todos los materiales dúctiles que tienen un bajo coeficiente de fricción. En este caso el metal se forma continuamente y se desliza sobre la cara de la herramienta sin freacturarse. Las virutas de este tipo se obtienen a altas velocidades de corte y son muy comunes cuando en corte se hace con herramientas de carburo. Debido a su simplicidad se puede analizar fácilmente desde el punto de vista de las fuerzas involucradas.
La viruta del tipo C es característica de aquellos maquinados de materiales dúctiles que tienen un coeficiente de fricción considerablemente alto.
En cuanto la herramienta inicia el corte se aglutina algo de material por delante del filo cortante a causa del alto coeficiente de fricción. En tanto el corte prosigue, la viruta fluyen sobre este filo y hacia arriba a lo largo de la cara de la herramienta. Periódicamente una pequeña cantidad de este filo recrecido se separa y sale con la viruta y se incrusta en la superficie torneada. Debido a esta acción el acabado de la superficie no es tan bueno como el tipo de viruta B. El filo recrecido permanece considerablemente constante durante el corte y tiene el efecto de alterar ligeramente el ángulo de inclinación. Sin embargo, en tanto se aumenta la velocidad del corte, el tamaño del filo decrecido disminuye y el acabado de la superficie mejora. Este fenómeno también disminuye, ya sea reduciendo el espesor de la viruta o aumentando el ángulo de inclinación, aunque en mucho de los materiales dúctiles no se puede eliminar completamente.
La elección de herramientas adecuadas, velocidades avances es un compromiso, ya que entre más rápido se opere una maquina es la eficiencia tanto del operador como de la maquina. Sin embargo afortunadamente, tal uso acelerado acorta grandemente la duración de la herramienta
PROCESOS DE FORMADO.
La deformación es únicamente uno de los diversos procesos que pueden usarse para obtener formas intermedias o finales en el metal.
El estudio de la plasticidad está comprometido con la relación entre el flujo del metal y el esfuerzo aplicado. Si ésta puede determinarse, entonces las formas mas requeridas pueden realizarse por la aplicación de fuerzas calculadas en direcciones específicas y a velocidades controladas.
EMBUTIDO PROFUNDO Y PRENSADO
El embutido profundo es una extensión del prensado en la que a un tejo de metal, se le da una tercera dimensión considerable después de fluir a través de un dado. El prensado simple se lleva a cabo presionando un trozo de metal entre un punzón y una matriz, así como al indentar un blanco y dar al producto una medida rígida. Latas para alimentos y botes para bebidas, son los ejemplos mas comunes.
Como se verá mas adelante, este proceso puede llevarse a cabo únicamente en frío. Cualquier intento de estirado en caliente, produce en el metal un cuello y la ruptura. El anillo de presión en la Fig. 4, evita que el blanco se levante de la superficie del dado, dando arrugas radiales o pliegues que tienden a formarse en el metal fluyendo hacia el interior desde la periferia del orificio del dado.
LAMINADO
Este es un proceso en el cual se reduce el espesor del material pasándolo entre un par de rodillos rotatorios. Los rodillos son generalmente cilíndricos y producen productos planos tales como láminas o cintas. También pueden estar ranurados o grabados sobre una superficie a fin de cambiar el perfil, así como estampar patrones en relieve. Este proceso de deformación puede llevarse a cabo, ya sea en caliente o en frío.
El trabajo en caliente es usado muy ampliamente porque es posible realizar un cambio en forma rápida y barata. El laminado en frío se lleva a cabo por razones especiales, tales como la producción de buenas superficies de acabado o propiedades mecánicas especiales. Se lamina más metal que el total tratado por todos los otros procesos.
FORJADO
En el caso más simple, el metal es comprimido entre martillo y un yunque y la forma final se obtiene girando y moviendo la pieza de trabajo entre golpe y golpe. Para producción en masa y el formado de secciones grandes, el martillo es sustituido por un martinete o dado deslizante en un bastidor e impulsado por una potencia mecánica, hidráulica o vapor.
Un dispositivo utiliza directamente el empuje hacia abajo que resulta de la explosión en la cabeza de un cilindro sobre un pistón móvil. Los dados que han sustituido al martillo y al yunque pueden variar desde un par de herramientas de cara plana, hasta ejemplares que tiene cavidades apareadas capaces de ser usadas para producir las formas más complejas.
Si bien, el forjado puede realizarse ya sea con el metal caliente o frío, el elevado gasto de potencia y desgaste en los dados, así como la relativamente pequeña amplitud de deformación posible, limita las aplicaciones del forjado en frío. Un ejemplo es el acuñado, donde los metales superficiales son impartidos a una pieza de metal por forjado en frío. El forjado en caliente se está utilizando cada vez más como un medio para eliminar uniones y por las estructuras particularmente apropiadas u propiedades que puede ser conferidas al producto final. Es el método de formado de metal más antiguo y hay muchos ejemplos que se remontan hasta 1000 años A. C.
ESTIRADO
Este es esencialmente un proceso para la producción de formas en hojas de metal. Las hojas se estiran sobre hormas conformadas en donde se deforman plásticamente hasta asumir los perfiles requeridos. Es un proceso de trabajo en frío y es generalmente el menos usado de todos los procesos de trabajo.
EXTRUSION
En este proceso un cilindro o trozo de metal es forzado a través de un orificio por medio de un émbolo, por tal efecto, el metal estirado y extruido tiene una sección transversal, igual a la del orificio del dado.
Hay dos tipos de extrusión, extrusión directa y extrusión indirecta o invertida. En el primer caso, el émbolo y el dado están en los extremos opuestos del cilindro y el material es empujado contra y a través del dado. En la extrusión indirecta el dado es sujetado en el extremo de un émbolo hueco y es forzado contra el cilindro, de manera que el metal es extruido hacia atrás, a través del dado.
La extrusión puede llevarse a cabo, ya sea en caliente o en frío, pero es predominantemente un proceso de trabajo en caliente. La única excepción a esto es la extrusión por impacto, en la cual el aluminio o trozos de plomo son extruidos por un rápido golpe para obtener productos como los tubos de pasta de dientes. En todos los procesos de extrusión hay una relación crítica entre las dimensiones del cilindro y las de la cavidad del contenedor, especialmente en la sección transversal.
El proceso se efectúa a una temperatura de 450 a 500 ºC con el fin de garantizar la extrusión.
El diseño de la matriz se hace de acuerdo con las necesidades del mercado o del cliente particular.
La extrusión nos permite obtener secciones transversales sólidas o tubulares que en otros metales sería imposible obtener sin recurrir al ensamble de varias piezas.
ESTIRADO DE ALAMBRE
Una varilla de metal se aguza en uno de sus extremos y luego es estirada a través del orificio cónico de un dado. La varilla que entra al dado tiene un diámetro mayor y sale con un diámetro menor. En los primeros ejemplos de este proceso, fueron estiradas longitudes cortas manualmente a través de una serie de agujeros de tamaño decreciente en una “placa de estirado” de hierro colado o de acero forjado. En las instalaciones modernas, grandes longitudes son estiradas continuamente a través de una serie de dados usando un número de poleas mecánicamente guiadas, que pueden producir muy grandes cantidades de alambre, de grandes longitudes a alta velocidad, usando muy poca fuerza humana. Usando la forma de orificio apropiada, es posible estirar una variedad de formas tales como óvalos, cuadrados, hexágonos, etc., mediante este proceso.
MAQUINADO
Es un proceso de manufactura en la cual se usa una herramienta de corte para remover el exceso de material de una parte de trabajo de tal manera que el material permanente sea la forma de la parte deseada.
Puede utilizarse herramienta de monofilo y multifilo.
TROQUELADO
Es un proceso de cambio de forma. La acción predominante del corte involucrado la deformación cortante de material de trabajo para formar una viruta.
VIRUTA: es la parte del material removida por una herramienta de corte.
Tipos de viruta:
  • viruta discontinua: se desprende en forma de astilla.
  • viruta continua. Es como el aserrín o al sacarle punta a un lápiz.
  • viruta continúa con filo recrecido: en pedazos.
Procesos de formado mecánico
El formado de partes con la aplicación de fuerza mecánica, se considera uno de los procesos de formación más importantes, en términos del valor de la producción y del método de producción. El formado de partes se puede efectuar con el material frío (formado en frío) o con material caliente (formado en caliente). Las fuerzas utilizadas para formar las partes pueden ser de tipo de flexión, compresión o cizallado y tensión. Los procesos de formado se pueden clasificar sobre la base de la forma en que se aplica la fuerza.
El formado por doblado se efectúa al obligar a el material a doblarse a lo largo de un eje. Entre los procesos por doblado están el doblez, pelado, corrugado y rechazado en alta velocidad. El formado por cizallado (guillotinado) es en realidad, un proceso de separación de material en el cual se hace pasar a presión una o dos cuchillas a traves de una parte fija.
El cizallado también incluye procesos tales como punzado o perforación, estampado, punzado con matrices y refinado. El formado por compresión se efectúa al obligar al material, frío o caliente, a adecuarse a la configuración deseada con la ayuda de un dado, un rodillo o un buzo o punzón. El formado por compresión, incluye procesos tales como forja, extrusion, laminado y acuñado.
El formado por tensión se efectúa al estirar el material para que adopte la configuración deseada. Incluye procesos tales como estirado, formado por trefilado y abocinado.
Procesos de remoción de material (maquinado)
Estos procesos se utilizan para conformar partes de materiales como metales, plásticos, cerámica y madera. El maquinado es un proceso que exige tiempo y desperdicia material. Sin embargo, es muy preciso y puede producir una tersura de superficie difícil de lograr con otros procesos de formación. El maquinado tradicional se lleva a cabo con el uso de una herramienta de corte, que remueve el material de la pieza de trabajo en forma de virutas, con lo cual se le da la configuración deseada
Los procesos para remoción de material se clasifican como tradicionales o con formación de virutas y no tradicionales o sin virutas.
En todos los procesos tradicionales para remoción de material, los tres elementos básicos son la pieza de trabajo, la herramienta de corte, y la maquina herramienta. Las funciones básicas de la maquina herramienta son: 1) proveer los movimientos relativos entre la herramienta de corte y la pieza de trabajo en forma de velocidades y avances; 2) mantener las posiciones relativas de la herramienta de corte y de la pieza de trabajo, a fin de que la remoción de material resultante produzca la forma requerida. Al variar las posiciones y movimientos entre la pieza de trabajo y la herramienta de corte, se puede efectuar mas una operación en la maquina herramienta.
Las herramientas de corte son, ya sea, de un solo filo o de filos múltiples.
Con los avenes de la tecnología, se han desarrollado materiales más fuertes y más duros. El procesamiento eficiente de esos materiales no era posible con los procesos tradicionales para remoción de material. Por lo tanto, se han creado varios procesos nuevos y especializados. Al contrario de los procesos tradicionales en donde la remoción del material necesita una herramienta de corte, los procesos no tradicionales se basan en los fenómenos ultrasónicos, químicos electroquimicos, de electrodescarga y haces de electrones, láser y iones. En estos procesos, la remoción de material no esta influida por las propiedades del
material; se puede maquinar material de cualquier dureza. Ahora bien, algunos de estos procesos se encuentran en la etapa experimental y no se presentan para elevados volúmenes de producción. En la mayoría de estos procesos, se maquina una parte cada vez. Los procesos no tradicionales son más complejos y se requiere considerable pericia y conocimientos para operarlos en forma eficiente.

Fundicion y colado al alto vacio, centrifuga y precision

Se denomina fundición y también esmelter al proceso de fabricación de piezas, comúnmente metálicas pero también de plástico, consistente en fundir un material e introducirlo en una cavidad, llamada molde, donde se solidifica.
El proceso tradicional es la fundición en arena, por ser ésta un material refractario muy abundante en la naturaleza y que, mezclada con arcilla, adquiere cohesión y moldeabilidad sin perder la permeabilidad que posibilita evacuar los gases del molde al tiempo que se vierte el metal fundido.
La fundición en arena consiste en colar un metal fundido, típicamente aleaciones de hierro, acero, bronce, latón y otros, en un molde de arena, dejarlo solidificar y posteriormente romper el molde para extraer la pieza fundida.
Para la fundición con metales como el hierro o el plomo, que son significativamente más pesados que el molde de arena, la caja de moldeo es a menudo cubierta con una chapa gruesa para prevenir un problema conocido como "flotación del molde", que ocurre cuando la presión del metal empuja la arena por encima de la cavidad del molde, causando que el proceso no se lleve a cabo de forma satisfactoria.


Etapas del proceso

 Diseño del modelo

La fundición en arena requiere un modelo a tamaño natural de madera, plástico y metales que define la forma externa de la pieza que se pretende reproducir y que formará la cavidad interna en el molde.
En lo que atañe a los materiales empleados para la construcción del modelo, se puede emplear desde madera o plásticos como el uretano y el poliestireno expandido (EPS) hasta metales como el aluminio o el hierro fundido.
Para el diseño del modelo se debe tener en cuenta una serie de medidas derivadas de la naturaleza del proceso de fundición:
  • Debe ser ligeramente más grande que la pieza final, ya que se debe tener en cuenta la contracción de la misma una vez se haya enfriado a temperatura ambiente. El porcentaje de reducción depende del material empleado para la fundición.
A esta dimensión se debe dar una sobremedida en los casos en el que se dé un proceso adicional de maquinado o acabado por arranque de viruta.
  • Las superficies del modelo deberán respetar unos ángulos mínimos con la dirección de desmoldeo (la dirección en la que se extraerá el modelo), con objeto de no dañar el molde de arena durante su extracción. Este ángulo se denomina ángulo de salida. Se recomiendan ángulos entre 0,5º y 2º.
  • Incluir todos los canales de alimentación y mazarotas necesarios para el llenado del molde con el metal fundido.
  • Si es necesario incluirá portadas, que son prolongaciones que sirven para la colocación del macho.
Los moldes, generalmente, se encuentran divididos en dos partes, la parte superior denominada cope y la parte inferior denominada draga que se corresponden a sendas partes del molde que es necesario fabricar. Los moldes se pueden distinguir:
  • Moldes de arena verde: estos moldes contienen arena húmeda.
  • Moldes de arena fría: usa aglutinantes orgánicos e inorgánicos para fortalecer el molde. Estos moldes no son cocidos en hornos y tienen como ventaja que son más precisos dimensionalmente pero también más caros que los moldes de arena verde.
  • Moldes no horneados: estos moldes no necesitan ser cocidos debido a sus aglutinantes (mezcla de arena y resina). Las aleaciones metálicas que típicamente se utilizan con estos moldes son el latón, el hierro y el aluminio.
Las etapas que se diferencian en la fabricación de una pieza metálica por fundición en arena comprende:
  • Compactación de la arena alrededor del modelo en la caja de moldeo. Para ello primeramente se coloca cada semimodelo en una tabla, dando lugar a las llamadas tablas modelo, que garantizan que posteriormente ambas partes del molde encajarán perfectamente.
Actualmente se realiza el llamado moldeo mecánico, consistente en la compactación de la arena por medios automáticos, generalmente mediante pistones (uno o varios) hidráulicos o neumáticos.
  • Colocación del macho o corazones. Si la pieza que se quiere fabricar es hueca, será necesario disponer machos, también llamados corazones que eviten que el metal fundido rellene dichas oquedades. Los machos se elaboran con arenas especiales debido a que deben ser más resistentes que el molde, ya que es necesario manipularlos para su colocación en el molde. Una vez colocado, se juntan ambas caras del molde y se sujetan. Siempre que sea posible, se debe prescindir del uso de estos corazones ya que aumentan el tiempo para la fabricación de una pieza y también su coste.
  • Colada. Vertido del material fundido. La entrada del metal fundido hacia la cavidad del molde se realiza a través de la copa o bebedero de colada y varios canales de alimentación. Estos serán eliminados una vez solidifique la pieza. Los gases y vapores generados durante el proceso son eliminados a través de la arena permeable.

Vertido del material fundido.
  • Enfriamiento y solidificación. Esta etapa es crítica de todo el proceso, ya que un enfriamiento excesivamente rápido puede provocar tensiones mecánicas en la pieza, e incluso la aparición de grietas, mientras que si es demasiado lento disminuye la productividad. Además un enfriamiento desigual provoca diferencias de dureza en la pieza. Para controlar la solidificación de la estructura metálica, es posible localizar placas metálicas enfriadas en el molde. También se puede utilizar estas placas metálicas para promover una solidificación direccional. Además, para aumentar la dureza de la pieza que se va a fabricar se pueden aplicar tratamientos térmicos o tratamientos de compresión.
  • Desmoldeo. Rotura del molde y extracción de la pieza. En el desmoldeo también debe retirarse la arena del macho. Toda esta arena se recicla para la construcción de nuevos moldes.
  • Desbarbado. Consiste en la eliminación de los conductos de alimentación, mazarota y rebarbas procedentes de la junta de ambas caras del molde.
  • Acabado y limpieza de los restos de arena adheridos. Posteriormente la pieza puede requerir mecanizado, tratamiento térmico, etc.

 Variantes

La precisión de la pieza fundida está limitada por el tipo de arena y el proceso de moldeo utilizado. La fundición hecha con arena verde gruesa proporcionará una textura áspera en la superficie de la pieza. Sin embargo, el moldeo con arena seca produce piezas con superficies mucho más lisas.
Para un mejor acabado de la superficie de las piezas, estas pueden ser pulidas o recubiertas con un residuo de óxidos, silicatos y otros compuestos que posteriormente se eliminarían mediante distintos procesos, entre ellos el granallado.
  • Moldeo en arena verde. La arena verde es una mezcla de arena de sílice, arcilla, humedad y otros aditivos. Este moldeo consiste en la elaboración del molde con arena húmeda y colada directa del metal fundido. Es el método más empleado en la actualidad, con todo tipo de metales, y para piezas de tamaño pequeño y medio.
No es adecuado para piezas grandes o de geometrías complejas, ni para obtener buenos acabados superficiales o tolerancias reducidas.
  • Moldeo en arena químico. Consiste en la elaboración del molde con arena preparada con una mezcla de resinas, el fraguado de estas resinas puede ser por un tercer componente liquido ó gaseoso, ó por autofraguado. De este modo se incrementa la rigidez del molde, lo que permite fundir piezas de mayor tamaño y mejor acabado superficial.
  • Moldeo en arena seca. La arena seca es una mezcla de arena de sílice seca, fijada con otros materiales que no sea la arcilla usando adhesivos de curado rápido. Antes de la colada, el molde se seca a elevada temperatura (entre 200 y 300ºC). De este modo se incrementa la rigidez del molde, lo que permite fundir piezas de mayor tamaño, geometrías más complejas y con mayor precisión dimensional y mejor acabado superficial.
  • Moldeo mecánico. Consiste en la automatización del moldeo en arena verde. La generación del molde mediante prensas mecánicas o hidráulicas, permite obtener moldes densos y resistentes que subsanan las deficiencias del moldeo tradicional en arena verde. Se distingue:
  • Moldeo Horizontal. A finales de los años 50 los sistemas de pistones alimentados hidráulicamente fueron usados para la compactación de la arena en los moldes. Estos métodos proporcionaban mayor estabilidad y precisión en los moldes. A finales de los años '60 se desarrolló la compactación de los moldes con aire a presión lanzado sobre el molde de arena precompactado.
La mayor desventaja de estos sistemas es la gran cantidad de piezas de repuesto que se consumen debido a la multitud de partes móviles, además de la producción limitada unos 90-120 moldes por hora.
  • Moldeo vertical. En 1962 la compañía danesa Dansk Industri Syndikat (DISA) implementó una ingeniosa idea de moldeo sin caja aplicando verticalmente presión. Las primeras líneas de este tipo podrían producir 240 moldes por hora y hoy en día las más modernas llegan a unos 550 moldes por hora. Aparte de la alta productividad, de los bajos requerimientos de mano de obra y de las precisiones en las dimensiones, este método es muy eficiente.
  • Moldeo en arena “matchplate”. Este método fue desarrollado y patentado en 1910. Sin embargo, no fue hasta principio de los años '60 cuando la compañía americana Hunter Automated Machinery Corporation lanzó su primera línea basada en esta tecnología. El método es similar al método vertical. El principal proveedor es DISA y actualmente este método es ampliamente utilizado, particularmente en Estados Unidos, China y la India. Una gran ventaja es el bajo precio de los modelos, facilidad para cambiar las piezas de los moldes y además, la idoneidad para la fabricación de series cortas de piezas en la fundición.
  • Moldeo a la cera perdida o microfusión. En este caso, el modelo se fabrica en cera o plástico. Una vez obtenido, se recubre de una serie de dos capas, la primera de un material que garantice un buen acabado superficial, y la segunda de un material refractario que proporciones rigidez al conjunto. Una vez que se ha completado el molde, se calienta para endurecer el recubrimiento y derretir la cera o el plástico para extraerla del molde en el que se verterá posteriormente el metal fundido.
  • Fundición en coquilla. En este caso, el molde es metálico.
  • Fundición por inyección
  • Fundición prensada
  • Fundición a baja presión
Es un sistema de fundición que consiste colocar un crisol de metal fundido en un recipiente a presión. Un tubo de alimentación conecta el metal de crisol con la entrada del molde. Se inyecta aire comprimido o un gas inerte en el recipiente a una presión de 20-105 kN / m². Al inyectarlo la única salida del metal será el tubo por lo que se genera el flujo de metal, que llena la matriz y forma la pieza. La presión se mantiene durante la solidificación para compensar la contracción volumétrica. No son necesarias ni mazarotas ni alimentación de colada.


Fundición centrifugada

De Wikipedia, la enciclopedia libre
El proceso de fundición centrifugada o centrífuga, consiste en depositar una capa de fundición líquida en un molde de revolución girando a gran velocidad y solidificar rápidamente el metal mediante un enfriamiento continuo del molde o coquilla. Las aplicaciones de este tipo de fundición son muy variadas, yendo desde la fabricación de telescopios o partes de joyería hasta las tuberías, este procedimiento frecuentemente utilizado para la fabricación de tubos sin costura, camisas y demás objetos simétricos.

 Tecnología

El metal se vierte caliente y fluido en una espiral que se transforma inmediatamente en una capa regular y continua del metal líquido, mantenida en forma cilíndrica por las fuerzas de inercia centrifugas creadas por la rotación de la coquilla. Esta fuerza centrífuga que se desarrolla lanza el metal líquido contra las paredes del molde y aumenta su presión, facilitando el llenado de los huecos y la solidificación en este estado. Simultáneamente se refrigera la coquilla por su exterior para absorber el calor y bajar la temperatura de la fundición hasta la temperatura de solidificación. En el curso de su enfriamiento, el metal líquido sufre una contracción térmica progresiva. El enfriamiento que sigue tiene como efecto una contracción térmica suplementaria del elemento sólido, que se despega de la coquilla y puede entonces extraerse. Tiene una mayor fiabilidad que piezas de fundición estática. Son relativamente libre de la porosidad del gas y la contracción. Muchas veces, los tratamientos de superficie, como carburación, temple y nitruración tiene que ser utilizado cuando un desgaste superficie resistente debe combinarse con una superficie dura y resistente exterior. Una de estas aplicaciones es la tubería bimetálica compuesta por dos concéntricos separados, capas de diferentes aleaciones y metales unidos entre sí. Estos tubos pueden ser económicamente utilizados en muchas aplicaciones y puede ser producido por el proceso de fundición centrífuga. Las características de la fundición dependen de varios parámetros que deben controlarse para tener una producción uniforme. Estos factores son, principalmente:
  • la temperatura de colada
  • la composición del material a utilizar
Las instalaciones suelen ser muy costosas y sólo se amortizan fabricando grandes series. Este método de conformación por moldeo tiene su génesis en el desarrollo de las tuberías para saneamiento.
La colada centrifuga es adecuada para la fabricación de cuerpos de revolución huecos, por ejemplo tubos, cilindros, y también casquillos de cojinete. El proceso es adecuado para la producción de estructuras de gran diámetro - tubos de petróleo, instalaciones de la industria química y suministro de agua, etc

Antecedentes históricos

Ya al principio del siglo XIX nació la idea de emplear la fuerza centrífuga para fundir los objetos de metal; perteneció a Antonio Eckhardt (patente en el año 1809), pero la insuficiencia técnica de las máquinas frenaba su aplicación práctica por la imposibilidad de conseguir el número necesario de revoluciones que dieran la fuerza centrífuga necesaria. En el año 1848 fue otorgada la primera patente en los Estados Unidos a T.G. Lovegrove, de Baltimore. Poco después de progresar la técnica Fernando Arens, en colaboración con Sensaud de De Lavaud, en Brasil, lograron por fin, en 1914, aplicar la fuerza centrífuga en la fundición de metales a escala industrial. Desde el año 1915 se fabrican en Argentina, en los talleres Tamet, tubos centrifugados con una máquina de tipo Arens y De Lavaud. En 1867 Joseph Monier puso en circulación los tubos de hormigón armado. En 1913 los italianos Diego Matteo y Adolfo Mazza ofrecieron otra variedad de tubos de cemento. Últimamente, la técnica de la construcción se enriqueció con muestras de vidrio termoaislante como material básico en la fabricación. Bloques de vidrio huecos, placas de revestimiento y paneles decorativos hicieron su aparición. En 1941 N. P. Waganoff fabricó tubos de vidrio por el método de centrifugación, que, por la sencillez de la fabricación y por el bajo coste de la misma, supuso una revolución en los métodos de fundición. En la actualidad este tipo de fundición está muy desarrollada y extendida, pudiéndose encontrar una gran variedad de productos realizados con este método.

 Ventajas y Desventajas

Ventajas

  • Uniformidad con las pripiedades del metal a utilizar.
  • Se utiliza menos material que con otros procesos.
  • No hay necesidad de montante.
  • Se logran las dimensiones requeridas en el exterior de la fundicion.
  • Se producen menos desechos.

 Desventajas

  • Es necesaria la utilizacion de un equipo extra para lograr la rotacion del molde.
  • El interior de las piezas suele contener impurezas.

Estados productores de acero en Mexico

ESTADOS PRODUCTORES DE ACERO
Colima(aceros de colima)
Aceros de la Huasteca(Tampico)
Monterrey
Guadalajara
Yucatan


SIDERURGICAS
Siderurgica lazaro Cardenas
Las truchas
Altos hornos Coahuila